Home > 技術情報・コラム > 機構設計者なら知っておきたい! 電子部品の発熱量計算と熱設計の基礎 > 第5回 インピーダンス (1)

技術情報・コラム

機構設計者なら知っておきたい! 電子部品の発熱量計算と熱設計の基礎


第5回 インピーダンス (1)

 今回は前回よりも少し複雑な交流回路について考えていきます。

RLC直列回路

 図5.1に示す 電気抵抗 R インダクタンス L のコイルと キャパシタンス静電容量C の コンデンサをつないだ直列回路を考えます。このような回路を3つの頭文字を取って、RLC直列回路 といいます。なお、電気抵抗の単位は Ω、インダクタンスの単位は H(ヘンリー)、キャパシタンスの単位は F(ファラッド)です。

シミュレーションの設定
図5.1 RLC直列回路

インピーダンス

 図5.1の回路に交流電圧 V を印加し、電流 I = Imejωt が流れている場合を考えてみます。電気抵抗の両端に発生する 電圧 VR オームの法則 から式(5.1)で与えられます。

  式 (5.1)

 コイルの両端に発生する電圧 VL は、インダクタンスとコイルを流れる電流の時間変化に比例し、式(5.2)で与えられます。

  式 (5.2)

 コンデンサの両端に発生する電圧 VC は、ある時間までに蓄積された電荷に比例し、キャパシタンスに反比例するため、式(5.3)で与えられます。

  式 (5.3)

直列回路では、全体の電圧は各電圧の和で与えられます。したがって、電圧と電流の関係は式(5.4)のようになります。

  式 (5.4)
 

式(4.4)の [] の中を Z と表すことにすると、Z は式(5.5)のように書き換えられます。

  式 (5.5)
 

この Z インピーダンス といいます。また、第1項の R は電気抵抗のインピーダンス成分で レジスタンス と呼ばれます。また、第2項 XL= ωL はコイルのインピーダンス成分で 誘導リアクタンス、第3項 XC= 1/ωC はコンデンサのインピーダンス成分で 容量リアクタンス と呼ばれ、これらをまとめた X は単に リアクタンス と呼ばれます。このインピーダンスを用いることで、電圧と電流の関係は式(5.6)のようにまとめられます。

  式 (5.6)
 

式の対応関係を見るとインピーダンス Z は、オームの法則の電気抵抗に相当することがわかります。ここから、電流は式(5.7)で与えられます。

  式 (5.7)
 

この式より、電流は 周波数 によって変化することがわかります。特に ωL=1/ωC、すなわち  の関係が成り立つときにインピーダンスは純粋な電気抵抗と等しくなり、最小値をとります。このときに電流が最大となりますが、この周波数  のことを 共振周波数 といいます。

 次回は、インピーダンスが電圧と電流の位相差に及ぼす影響を考えていきます。

 

チーム写真
著者プロフィール
CrEAM(Cradle Engineers for Accelerating Manufacturing)

電子機器の熱問題をなくすために結成された3ピースユニット。
熱流体解析コンサルタントエンジニアとしての業務経験を生かし、
「熱設計・熱解析をもっと身近なものに。」を目標に活動中。

-- 最後までお読みいただきありがとうございます。ご意見、ご要望などございましたら、下記にご入力ください --



※お問い合わせの際には、ご所属、ご氏名など、個人情報を正しくご記入ください。
 ハンドルネーム等、匿名および連絡先が不明の電子メールは回答いたしかねる場合がございますのでご了承ください。

※お客様の個人情報の取り扱いにつきましては、弊社個人情報保護方針をお読みになり同意の上お進みください。

※お問い合わせの内容によっては(例:宣伝・勧誘・売込み等)、ご返信を差し上げられない場合がございます。
 また、内容によっては回答までに数日かかる場合がございます。

※当社からお答えした内容は、問い合わせ頂いた法人と個人の方へお答えした内容につき、
 その全部または一部を他の方へ開示する行為は堅くお断りしております。

バックナンバー

基板専用リアルタイム熱解析ツール PICLS

TOP